(E)-2-alkenals are aldehydes containing an unsaturated bond between the alpha and beta carbons. 2-alkenals are produced by many organisms for defense against predators and secretions containing (E)-2-alkenals cause predators to stop attacking and allow the prey to escape. Chemical ecologists have described many alkenal compounds with 3–20 carbons common, having varied positions of double bonds and substitutions. How do these defensive alkenals act to deter predators? We have tested the effects of (E)-2-alkenals with 6–12 carbons on transient receptor potential channels (TRP) commonly found in sensory neurons. We find that (E)-2-alkenals activate transient receptor potential ankyrin subtype 1 (TRPA1) at low concentrations—EC50s 10–100 µM (in 0 added Ca2+ external solutions). Other TRP channels were either weakly activated (TRPV1, TRPV3) or insensitive (TRPV2, TRPV4, TRPM8). (E)-2-alkenals may activate TRPA1 by modifying cysteine side chains. However, target cysteines include others beyond the 3 in the amino-terminus implicated in activation, as a channel with cysteines at 621, 641, 665 mutated to serine responded robustly. Related chemicals, including the aldehydes hexanal and decanal, and (E)-2-hexen-1-ol also activated TRPA1, but with weaker potency. Rat trigeminal nerve recordings and behavioral experiments showed (E)-2-hexenal was aversive. Our results suggest that TRPA1 is likely a major target of these commonly used defensive chemicals.
from #ΓεύσηΌσφρηση via xlomafota13 on Inoreader http://ift.tt/1To5Lmj
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου