Κυριακή 30 Απριλίου 2017

Causal role of the posterior parietal cortex for two-digit mental subtraction and addition: A repetitive TMS study

Publication date: 15 July 2017
Source:NeuroImage, Volume 155
Author(s): Maria Montefinese, Cristina Turco, Francesco Piccione, Carlo Semenza
Although parietal areas of the left hemisphere are known to be involved in simple mental calculation, the possible role of the homologue areas of the right hemisphere in mental complex calculation remains debated. In the present study, we tested the causal role of the posterior parietal cortex of both hemispheres in two-digit mental addition and subtraction by means of neuronavigated repetitive TMS (rTMS), investigating possible hemispheric asymmetries in specific parietal areas. In particular, we performed two rTMS experiments, which differed only for the target sites stimulated, on independent samples of participants. rTMS was delivered over the horizontal and ventral portions of the intraparietal sulcus (HIPS and VIPS, respectively) of each hemisphere in Experiment 1, and over the angular and supramarginal gyri (ANG and SMG, respectively) of each hemisphere in Experiment 2. First, we found that each cerebral area of the posterior parietal cortex is involved to some degree in the two-digit addition and subtraction. Second, in Experiment 1, we found a stronger pattern of hemispheric asymmetry for the involvement of HIPS in addition compared to subtraction. In particular, results showed a greater involvement of the right HIPS than the left one for addition. Moreover, we found less asymmetry for the VIPS. Taken together, these results suggest that two-digit mental addition is more strongly associated with the use of a spatial mapping compared to subtraction. In support of this view, in Experiment 2, a greater role of left and right ANG was found for addition needed in verbal processing of numbers and in visuospatial attention processes, respectively. We also revealed a greater involvement of the bilateral SMG in two-digit mental subtraction, in response to greater working memory load required to solve this latter operation compared to addition.



http://ift.tt/2qttd8e



http://ift.tt/2pkRgZ6

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις