Publication date: 5 October 2017
Source:Journal of Alloys and Compounds, Volume 720
Author(s): Bahareh Ameri, Saied Saeed Hosseiny Davarani, Hamid Reza Moazami, Hamideh Darjazi
ZnMn2O4/Mn3O4 composite nanostructures were prepared by cathodic electrodeposition followed by heat treatment. A mixed hydroxide precursor was galvanostatically electrodeposited from aqueous solution containing Mn and Zn (as nitrates) and the obtained precursor was annealed to prepare the composite. This composite exhibited much better electrochemical behaviors than bare Mn3O4. Rietveld analysis of the X-ray diffraction (XRD) data showed that the product was composed of Mn3O4, ZnMn2O4 and minor amounts of λ-MnO2. Furthermore, the obtained composite was characterized by Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). Field emission scanning electron micrographs (FE-SEM) and transmission electron micrographs (TEM) revealed co-existence of nanoparticles and high aspect ratio nanorods. Electrochemical performance and ion transport of ZnMn2O4/Mn3O4 composite were studied via galvanostatic charge-discharge (GCD) cycling and electrochemical impedance spectroscopy (EIS). Cyclic voltammetric (CV) measurements showed a maximum specific capacitance of 321.34 F/g at the scan rate of 1 mV/s. 93% of this specific capacitance was retained after 2000 cycles.
Graphical abstract
http://ift.tt/2rlKQse
http://ift.tt/2rG28TJ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου