Τρίτη 10 Ιουλίου 2018

Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox.

Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal processing toolbox.

Chem Senses. 2018 Jul 07;:

Authors: Noto T, Zhou G, Schuele S, Templer J, Zelano C

Abstract
Nasal inhalation is the basis of olfactory perception and drives neural activity in olfactory and limbic brain regions. Therefore, our ability to investigate the neural underpinnings of olfaction and respiration can only be as good as our ability to characterize features of respiratory behavior. However, recordings of natural breathing are inherently non-stationary, non-sinusoidal, and idiosyncratic making feature extraction difficult to automate. The absence of a freely-available computational tool for characterizing respiratory behavior is a hindrance to many facets of olfactory and respiratory neuroscience. To solve this problem, we developed BreathMetrics, an open-source tool that automatically extracts the full set of features embedded in human nasal airflow recordings. Here we rigorously validate BreathMetrics' feature estimation accuracy on multiple nasal airflow datasets, intracranial electrophysiological recordings of human olfactory cortex, and computational simulations of breathing signals. We hope this tool will allow researchers to ask new questions about how respiration relates to body, brain, and behavior.

PMID: 29985980 [PubMed - as supplied by publisher]



from #ΓεύσηΌσφρηση via xlomafota13 on Inoreader https://ift.tt/2L3SpQM

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις