Objectives/Hypothesis
Cranial nerve transection during head and neck surgery is conventionally repaired by microsuture reanastomosis. Laser nerve welding (LNW), using CO2 laser to spot-weld the epineurium of transected nerve endings, has been shown in animal models to be a novel alternative to microsuture repair. This method avoids needle/suture material and minimizes instrumentation of the nerve. We hypothesized that potassium titanyl phosphate (KTP) laser would be superior to CO2 laser in repairing transected nerves. Using a rat posterior tibial nerve injury model, we compared CO2 laser, KTP laser, and microsuture reanastomosis.
Study Design
Animal study.
Methods
Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by microsuture repair (n = 15), CO2 laser repair (n = 15), or KTP laser repair (n = 15). Weekly walking tracks were performed to measure functional recovery. Nerve segments were harvested for axon counting.
Results
At 6 weeks, the KTP LNW had the best functional recovery (92.4 ± 8.6%) compared to microsuture repair (84.5 ± 10.2%, difference 7.9%, 95% confidence interval [CI]: 0.84%-14.96%). CO2 laser repair had a functional recovery of 86.8 ± 11.2%. KTP LNW had better axon recovery compared to transection/repair (difference 530.7 axons, 95% CI: 329.9-731.5). Operative time for the microsuture repair was 18.2 ± 6.8 minutes, compared to 5.8 ± 3.7 minutes for the LNW groups (difference 12.4 minutes, 95% CI: 8.6-16.2 minutes).
Conclusions
KTP, CO2, and microsuture repair all showed good functional recovery following complete transection of the posterior tibial nerve. Following complete nerve transection during head and neck surgery, KTP LNW may be a novel alternative to microsuture repair.
Level of Evidence
NA Laryngoscope, 2016
http://ift.tt/2fEut3B
http://ift.tt/2fwkFeo
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου